
Overview Operational Semantics Equivalence Proof

Semantics

Thomas Sewell
UNSW

Term 3 2024

1



Overview Operational Semantics Equivalence Proof

Semantics

Semantics

Scopes Scopes

Static Dynamic

Types

Scopes

Behaviour

Cost

σηµαντιχως

2



Overview Operational Semantics Equivalence Proof

Static Semantics

Definition

The static semantics of a program is those significant aspects of
the meaning of P that can be determined by the compiler (or an
external lint tool) without running the program.

Recall our arithmetic expression language. What properties might
we derive statically about those terms?
The only thing we can check is that the program is well-scoped
(assuming FOAS).

3



Overview Operational Semantics Equivalence Proof

Scope-Checking

Γ ⊢ (Num n) ok

Γ ⊢ e1 ok Γ ⊢ e2 ok

Γ ⊢ (Times e1 e2) ok

Γ ⊢ e1 ok Γ ⊢ e2 ok

Γ ⊢ (Plus e1 e2) ok

(x bound) ∈ Γ

Γ ⊢ (Var x) ok

Γ ⊢ e1 ok x bound, Γ ⊢ e2 ok

Γ ⊢ (Let x e1 e2) ok

Key Idea

We keep a context Γ, a set of assumptions, on the LHS of our
judgement, indicating what is required in order for e to be
well-scoped.
This could be read as hypothetical derivations for the judgement
e ok or as a binary judgement Γ ⊢ e ok; whichever you prefer.

4



Overview Operational Semantics Equivalence Proof

Scope-Checking Example

Γ ⊢ (Num n) ok

Γ ⊢ e1 ok Γ ⊢ e2 ok

Γ ⊢ (Times e1 e2) ok

Γ ⊢ e1 ok Γ ⊢ e2 ok

Γ ⊢ (Plus e1 e2) ok

(x bound) ∈ Γ

Γ ⊢ (Var x) ok

Γ ⊢ e1 ok x bound, Γ ⊢ e2 ok

Γ ⊢ (Let x e1 e2) ok

⊢ (Num 3)

"x" ⊢ (Num 4)

"y" , "x" ⊢ (Var "x") "y" , "x" ⊢ (Var "y")

"y" , "x" ⊢ (Plus (Var "x") (Var "y"))

"x" ⊢ (Let "y" (Num 4) (Plus (Var "x") (Var "y")))

⊢ (Let "x" (Num 3) (Let "y" (Num 4) (Plus (Var "x") (Var "y"))))

5



Overview Operational Semantics Equivalence Proof

Dynamic Semantics
Dynamic Semantics can be specified in many ways:

1 Denotational Semantics is the compositional construction of a
mathematical object for each form of syntax. COMP6752
(briefly)

2 Axiomatic Semantics is the construction of a proof calculus to
allow correctness of a program to be verified. COMP2111,
COMP6721

3 Operational Semantics is the construction of a
program-evaluating state machine or transition system.

In this course

We focus mostly on operational semantics. We will use axiomatic
semantics (Hoare Logic) on Thursday in the imperative
programming topic. Denotational semantics are mostly an
extension topic, except for the very next slide.

6



Overview Operational Semantics Equivalence Proof

Denotational Semantics

J·K : AST → (Var ↛ Z) → Z

Our denotation for arithmetic expressions is functions from
environments (mapping from variables to their values) to values.

JNum nK = λE . n
JVar xK = λE . E (x)
JPlus e1 e2K = λE . Je1KE + Je2KE
JTimes e1 e2K = λE . Je1KE × Je2KE
JLet x e1 e2K = λE . Je2K (E [x := Je1KE ])

Where E [x := n] is a new environment just like E , except the
variable x now maps to n.

7



Overview Operational Semantics Equivalence Proof

Operational Semantics
There are two main kinds of operational semantics.

Small StepSmall Step Big StepBig Step

Also called natural or
evaluation semantics.

One big judgement

relating expressions

to their values:

e ⇓ v

Also called structural
operational
semantics (SOS).

A judgement that

specifies transitions

between states:

e 7→ e ′

8



Overview Operational Semantics Equivalence Proof

Big-Step Semantics
We need:

A set of evaluable expressions E

A set of values V

A relation ⇓ ⊆ E × V

Example (Arithmetic Expressions)

E is the set of all closed expressions {e | e ok}. V is the set of
integers Z.

(Num n) ⇓ n

e1 ⇓ v1 e2[x := (Num v1)] ⇓ v2

(Let e1 (x . e2)) ⇓ v2

e1 ⇓ v1 e2 ⇓ v2

(Plus e1 e2) ⇓ (v1 + v2)

e1 ⇓ v1 e2 ⇓ v2

(Times e1 e2) ⇓ (v1 × v2)

To Code Let’s do it in Haskell!

9



Overview Operational Semantics Equivalence Proof

Evaluation Strategies

e1 ⇓ v1 e2[x := (Num v1)] ⇓ v2

(Let e1 (x . e2)) ⇓ v2

Any other ways to evaluate Let?
The above is called call-by-value or strict evaluation. Below we
have call-by-name:

e2[x := e1] ⇓ v2

(Let e1 (x . e2)) ⇓ v2

This can be computationally very expensive, for example:

let x = ⟨very expensive computation⟩ in x + x + x + x

In confluent languages like this or λ-calculus, this only matters for
performance. In other languages, this is not so. Why?

Haskell uses call-by-need or lazy evaluation, which optimises cases
like this.

10



Overview Operational Semantics Equivalence Proof

Small Step Semantics

For small step semantics, we need:

A set of states Σ

A set of initial states I ⊆ Σ

A set of final states F ⊆ Σ

A relation 7→ ⊆ Σ× Σ, which specifies only “one step” of the
execution.

An execution or trace σ1 7→ σ2 7→ σ3 7→ · · · 7→ σn is called
maximal if there exists no σn+1 such that σn 7→ σn+1; and is called
complete if it is maximal and σn ∈ F .

11



Overview Operational Semantics Equivalence Proof

Example

Example (Arithmetic Expressions)

Σ and I are the set of all closed expressions {e | e ok}, F is the
set of evaluated expressions {(Num n) | n ∈ Z}.

e1 7→ e′1
(Plus e1 e2) 7→ (Plus e′1 e2)

e2 7→ e′2
(Plus (Num n) e2) 7→ (Plus (Num n) e′2)

(Plus (Num n) (Num m)) 7→ (Num (n +m))

(Similarly for Times)

e1 7→ e′1
(Let e1 (x . e2)) 7→ (Let e′1 (x . e2))

(Let (Num n) (x . e2)) 7→ e2[x := Num n]

To Code Let’s do it in Haskell!

12



Overview Operational Semantics Equivalence Proof

Equivalence

Comparing small step and big step

Small step semantics are lower-level, they clearly specify the order
of evaluation. Big step semantics give us a result without telling us
explicitly how it was computed.

Having specified the dynamic semantics in these two ways, it
becomes desirable to show they are equivalent, that is:

If there exists a trace e 7→ · · · 7→ (Num n), then e ⇓ n, and vice
versa.

We will need to define some notation to remove those blasted
magic dots.

13



Overview Operational Semantics Equivalence Proof

Notation

Let
⋆7→ be the reflexive, transitive closure of 7→.

e
⋆7→ e

e1 7→ e2 e2
⋆7→ en

e1
⋆7→ en

We can now state our property formally as:

e
⋆7→ (Num n) ⇐⇒ e ⇓ n

14



Overview Operational Semantics Equivalence Proof

Doing the Proof

The proof will be done on the “board”, with typeset versions
uploaded later.
The big-step to small-step direction can be proven by reasonably
straightforward rule induction:

e ⇓ n

e
⋆7→ (Num n)

The other direction requires the lemma:

e 7→ e ′ e ′ ⇓ n

e ⇓ n

The abridged proof is presented in this lecture, with all cases left
for the course website.

15



Overview Operational Semantics Equivalence Proof

Big and small (eliding some small-step rules)

e1 7→ e ′1

(Plus e1 e2) 7→ (Plus e ′1 e2)

e2 7→ e ′2

(Plus (Num n) e2) 7→ (Plus (Num n) e ′2)

(Plus (Num n) (Num m)) 7→ (Num (n +m))

e1 7→ e ′1

(Let e1 (x . e2)) 7→ (Let e ′1 (x . e2))

(Let (Num n) (x . e2)) 7→ e2[x := Num n]

(Num n) ⇓ n

e1 ⇓ v1 e2[x := (Num v1)] ⇓ v2

(Let e1 (x . e2)) ⇓ v2

e1 ⇓ v1 e2 ⇓ v2

(Plus e1 e2) ⇓ (v1 + v2)

e1 ⇓ v1 e2 ⇓ v2

(Times e1 e2) ⇓ (v1 × v2)

16


	Overview
	

	Operational Semantics
	

	Equivalence Proof
	


